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ABSTRACT 28 

Guidelines for trip and parking generation in the United States come mainly from the Institute of 29 
Transportation Engineers (ITE). However, their trip and parking manuals focus on suburban 30 
locations with limited transit and pedestrian access. This study aims to determine how many 31 
fewer vehicle trips are generated, and how much less parking demand is generated, by different 32 
housing types (single-family attached, single-family detached, and apartment and condo) in 33 
different settings, from low density suburban environments to compact, mixed-use urban 34 
environments. 35 

Using household travel survey data from 21 diverse regions of the United States, we estimate 36 
a multilevel negative binomial model of vehicle trip generation and a multilevel Poisson model 37 
of vehicle ownership, vehicle trip generation and vehicle ownership being logically modeled as 38 
count variables. The models have the expected signs on their coefficients and have respectable 39 
explanatory power. Vehicle trip generation and vehicle ownership (and hence parking demand) 40 
decrease with the compactness of neighborhood development, measured with a principal 41 
component that depends on activity density, land use diversity, intersection density, transit stop 42 
density, and employment accessibility (after controlling for sociodemographic variables). The 43 
models capture the phenomena of “trip degeneration” and “car shedding” as development 44 
patterns become more compact. 45 

Reducing the number of required parking spaces, and vehicle trips for which mitigation is 46 
required, creates the potential for significant savings when developing urban projects. Guidelines 47 
are provided for using study results in transportation planning. 48 

Keywords: trip generation, parking generation, car shedding, compact development, multilevel 49 
modeling  50 
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INTRODUCTION 51 

Vehicle use and ownership are of interest from the standpoints of energy, environment and 52 
transportation. Over half of the world’s oil and about 30% of total commercial world energy are 53 
consumed by the transport sector. In 2013, about 31% of total U.S. CO2 emissions and 26% of 54 
total U.S. greenhouse gas emissions were generated by transportation (1). Vehicle trip generation 55 
and vehicle ownership models are used by policy makers to identify factors that affect vehicle 56 
miles traveled (VMT), and therefore address problems related to energy consumption, air 57 
pollution, and traffic congestion (2, 3). 58 

Guidelines for trip and parking generation in the United States come mainly from the 59 
Institute of Transportation Engineers (ITE). The ITE Trip Generation Manual and Parking 60 
Generation manual are considered “bibles” in transportation planning. However, these manuals 61 
focus on suburban locations with limited transit and pedestrian access. This study aims to 62 
determine how many fewer vehicle trips are generated, and how much less parking demand is 63 
generated, by different housing types in different settings, from low density suburban 64 
environments to compact, mixed-use urban environments. 65 

It does so with the largest sample of travel and vehicle ownership data ever collected outside 66 
the National Household Travel Survey (NHTS) of 2009. And unlike NHTS, we have precise 67 
locational data for all households in our sample. Literally hundreds of studies have used 68 
household travel data to model travel outcomes and vehicle ownership in terms of built 69 
environmental data. So why one more study? The problem with the existing literature is simple. 70 
It lacks external validity. The use of data for single regions, specification of different models in 71 
each study, and use of different metrics to represent the built environment, precludes the use of 72 
models for general transportation planning purposes. By contrast, this study pools data from 21 73 
diverse regions of the U.S. and uses consistently defined metrics to estimate best-fit vehicle trip 74 
generation and vehicle ownership models of three different types of housing (single-family 75 
attached, single-family detached, and apartment and condo). 76 

LITERATURE REVIEW 77 

The Built Environment 78 

In travel research, influences of the built environment on travel have often been named with 79 
words beginning with D – density, diversity, design, destination accessibility, and distance to 80 
transit (4). While not part of the environment, demographics are the sixth D, controlled as 81 
confounding influences in travel studies. 82 

Many studies provide economic and behavioral explanations of why built environments 83 
might be expected to influence travel choices. Basically, the first five Ds affect the accessibility 84 
of trip productions to trip attractions, and hence the generalized cost of travel by different modes 85 
to and from different locations. This, via consumer choice theory of travel demand (5), affects 86 
the utility of different travel choices. For example, destinations that are closer as a result of 87 
higher development density or greater land use diversity may be easier to walk to than drive to.  88 
As the D values increase (except distance to transit, with an inverse relationship), the generalized 89 
cost of travel by alternative modes decreases, relative utility increases, and mode shifts occur.  90 

Vehicle Trip Generation and Degeneration 91 

The ITE Trip Generation Manual itself states that its “[d]ata were primarily collected at 92 
suburban locations having little or no transit service, nearby pedestrian amenities, or travel 93 
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demand management (TDM) programs” (ITE, 2012: page 1). As a result, ITE methods 94 
overestimate vehicle trips generated at urban sites. A sample of 17 residential transit oriented 95 
developments (TODs) averaged 44% fewer daily vehicle-trips than estimated by ITE (7). 96 
Another study found actual peak-hour trip rates to be between 26% and 50% lower than ITE 97 
rates for mid-rise apartments, general office buildings, and quality restaurants at urban infill sites 98 
(8). At thirty smart growth development sites in California, actual vehicle trip data showed 56-58% 99 
fewer vehicle trips than the ITE model predicted (9). In four out of five TOD cases, Ewing et al. 100 
(2017) found vehicle trip generation rates are about half or less of what is predicted in the ITE 101 
manual. 102 

The ITE manual admits this limitation by saying: “At specific sites, the user may wish to 103 
modify trip-generation rates presented in this document to reflect the presence of public 104 
transportation service, ridesharing, or other TDM measures; enhanced pedestrian and bicycle 105 
trip-making opportunities; or other special characteristics of the site or surrounding area” (ITE, 106 
2012: page 1). This kind of modification is seldom done in practice.  107 

There are several trip generation methods developed as alternatives to the standard ITE 108 
method, primarily focusing on mixed-use developments. ITE (2014) provides trip generation for 109 
mixed-used developments using the procedure in NCHRP Report 684 (12), which is an 110 
enhancement of the current ITE multiuse method based on data collected at six sites and tested at 111 
three sites. However, it does not account for land use and transportation contextual factors. 112 
Initially developed for the United States Environmental Protection Agency (EPA) and later 113 
adapted by San Diego Association of Governments (SANDAG), the EPA Mixed-Use method is 114 
based on household travel survey data from large multi-use sites in six (updated to 13) 115 
metropolitan areas in the U.S. and includes various D variables to estimate external vehicle trips 116 
(13, 14). However, most of these multi-use methods could not be applied to the same type of 117 
behavior at single-use urban developments (15). 118 

There are currently a few adjustments available that account for vehicle trip generation at 119 
single-use developments in urban areas. Two studies (16, 17) developed adjustments to 120 
supplement the current ITE method for specific land use types based on site-level data 121 
collections. In both studies, adjustments of trip generation rate are estimated as a function of the 122 
built environment. However, both of the studies are limited to small sample sizes in a single 123 
metropolitan area or a state and a selected few land-use types.  124 

There are rich studies on the built environment and travel in the literature. A meta-analysis in 125 
2010 found more than 200 individual studies of the built environment and travel (4). A more 126 
recent meta-regression analysis expanded this sample considerably (18). Generalizing across this 127 
vast literature, trip generation is a function of socioeconomic characteristics of travelers and the 128 
built environment. Compact developments that concentrate residents, workers, and retail shops in 129 
close proximity to one another can “de-generate” vehicle trips. 130 

Vehicle Ownership, Car Shedding, and Associated Parking Generation 131 

Vehicle ownership and associated parking generation are one and the same. A household with 132 
two vehicles will generate peak demand for two parking spaces. The ITE Parking Generation 133 
manual notes that study sites upon which the manual is based are “primarily isolated, suburban 134 
sites” (ITE, 2010). Studies show that vehicle ownership is lower in transit-served areas than 135 
those that are not transit-served (20, 21). By comparing parking-generation rates for housing 136 
projects near rail stops with parking supplies and with ITE’s parking-generation rates, Cervero et 137 
al. (2010) found there is an oversupply of parking near transit, sometimes by as much as 25-30 138 
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percent. Oversupply of parking spaces may result in an increase in vehicle ownership, which is 139 
supported by the strong positive correlation between parking supply and vehicle ownership and 140 
auto use (Chatman, 2013; Guo, 2013; Weinberger, 2012). 141 

Vehicle ownership is generally treated as a function of households’ sociodemographic 142 
characteristics. Some studies use income or income per capita to forecast national or global 143 
vehicle ownership (2). Some other sociodemographic characteristics have been reported as good 144 
predictors of vehicle ownership, like household size, number of children and workers, and even 145 
immigration status (27). 146 

However, there are many studies that have found additional relationships between vehicle 147 
ownership and built environmental variables. Households that live in dense, mixed-use, and 148 
transit served areas tend to own fewer automobiles, a phenomenon called car shedding; at the 149 
same time, they make more walk, bike and transit trips (28). Studies have found that the built 150 
environment affects vehicle ownership after controlling for the sociodemographic characteristics 151 
of households. All of the Ds have been related to vehicle ownership in one study or another (23, 152 
24, 29, 30). 153 

Additionally, some other variables have also been reported to be related to vehicle ownership, 154 
like parking availability (Chatman, 2013), housing or neighborhood type (23, 30), travel attitudes 155 
(29), and urban area size (32). 156 

METHODOLOGY 157 

This study addresses the external validity issues with existing models by pooling household 158 
travel and built environment data from 21 diverse U.S. regions and using a large number of 159 
consistently defined and measured built environmental variables to model vehicle ownership and 160 
use. In this study, improvements to standard vehicle trip generation and vehicle ownership 161 
models include: 162 

• Accounting for the impacts of all D variables while controlling for sociodemographic 163 
characteristics; 164 

• Using road network buffers around households’ location to capture the built environment, 165 
instead of predefined and aggregated geographic units, like traffic analysis zones (TAZs), 166 
zip codes, census block groups; 167 

• Using a count regression model (negative binomial regression or Poisson regression); 168 
• Using multi-level modeling (MLM) to account for dependence of households in the same 169 

region on shared regional characteristics. 170 

Household Travel Survey Data 171 

The main criterion for inclusion of regions in this study was data availability. Regions had to 172 
offer regional household travel surveys with XY coordinates, so we could geocode the precise 173 
locations of residences and capture built environment for households more accurately than using 174 
predefined and aggregated geographic units. It is not easy to assemble databases that meet this 175 
criterion, as confidentiality concerns mean that metropolitan planning organizations are often 176 
unwilling to share XY travel data.  177 

At present, we have consistent data sets for 21 regions. They are Atlanta, GA, 2011, Austin, 178 
TX, 2005, Boston, MA, 2011, Denver, CO, 2010, Eugene, OR, 2011, Greensboro, NC, 2009, 179 
Houston, TX, 2008, Indianapolis, IN, 2009, Kansas City, MO, 2004, Miami-Dade, FL, 2009, 180 
Minneapolis-St. Paul, 2010, West Palm Beach, FL, 2009, Phoenix, AZ, 2008, Portland, OR, 181 
2011, Provo-Orem, UT, 2012, Rochester, NY, 2011, Salem, OR, 2010, Salt Lake City, UT, 2012, 182 
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San Antonio, TX, 2007, Seattle, WA, 2006, Winston-Salem, NC, 2009. The resulting pooled 183 
data set consists of 76,596 trips by 766,995 households. The regions are diverse as Boston and 184 
Portland at one end of the urban form continuum and Houston and Atlanta at the other.  185 

To our knowledge, this is the largest sample of household travel records ever assembled for 186 
such a study outside the National Household Travel Survey of 2009 (NHTS).  And relative to 187 
NHTS, our database provides much larger samples for individual regions and permits the 188 
calculation of a wide array of built environmental variables based on the precise location of 189 
households. NHTS provides geocodes (identifies households) only at the census tract level. 190 

Built Environmental Data 191 

The regions included in our household travel survey sample were, in addition, able to supply GIS 192 
data layers for streets and transit stops, population and employment for traffic analysis zones, 193 
and travel times between zones by different modes for the same years as the household travel 194 
surveys.   195 

All the Ds are represented in our model based on these data: 196 
• Parcel level land use data with detailed land use classifications; from these we can 197 

compute detailed measures of land use mix.  198 
• A GIS layer for street networks and intersections; from these we can compute street 199 

connectivity measures. 200 
• A GIS layer for transit stops; from these data we can compute transit stop densities. 201 
• Population and employment at the block or block group level; from these we can 202 

compute activity density. 203 
• Travel times for auto and transit travel from TAZ to TAZ (so-called travel time skims); 204 

from these, and TAZ employment data, we can compute regional employment 205 
accessibility measures for auto and transit. 206 

Point, line and polygon data from the different sources were joined with road network buffers 207 
of household locations to obtain raw data, such as the number of intersections within buffers. 208 
These were then used to compute refined built environmental measures such as intersection 209 
density, which is simply the number of intersections divided by land area within the buffer. 210 

Variables 211 

Using these datasets, the built environment around a household’s home address was measured 212 
for buffers of different widths (¼, ½, and one mile street network distances). Ultimately, one-213 
mile buffers were chosen to define the relevant built environment for purposes of vehicle trip and 214 
parking generation. In fact, according to the 2009 NHTS, the average walk trip length in the 215 
United States varies by trip purpose from 0.52 miles for shopping trips to 0.88 miles for work 216 
trips. The overall average is 0.70 miles, which implies a relevant environmental scale of ½ to one 217 
mile. Also, from NHTS, bike trips for most purposes average more than one mile, which implies 218 
a relevant environmental scale of at least one mile. 219 

The dependent and independent variables used in this study are defined in Table 1. Sample 220 
sizes and descriptive statistics are also provided. The variables in this study cover all of the Ds, 221 
from density to demographics. With different measures, a total of 13 independent variables are 222 
available to explain household vehicle ownership and use. All variables are consistently defined 223 
from region to region. We categorized the types of the house into three groups: single-family 224 
detached, single-family attached, and apartment and condo. 225 
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TABLE 1 Variables in This Study 226 
Variable N Mean S.D. 

Dependent variables –household 
number of home-based vehicle trips for the household 76,596 4.03 2.87 
number of vehicle owned by the household 76,596 1.93 1.03 
Independent variables – sociodemographic characteristics 
household size 76,596 2.5 1.37 
number of workers in the household 76,596 1.25 0.88 
real household income (in 1000s of 2012 dollars) 76,596 77.4 49.85 
Independent variables – built environment within one mile buffer 
activity density within one mile buffer (population + employment 
per square mile, in 1000s) 76,596 6.74 9.73 

job-population balance within one mile buffer (Ewing et al., 2014) 76,596 0.63 0.25 
land use entropy within one mile buffer (Ewing et al., 2014) 76,596 0.46 0.26 
intersection density within one mile buffer 76,596 112.59 79.53 
the percentage of 4-way intersections one mile buffer 76,596 26.1 18.47 
transit stop density within one mile buffer 76,596 20.73 26.29 
employment accessibility, percentage of regional employment 
within 10 min by car 76,596 6.91 10.22 

Independent variables – region 
regional compactness index developed by Ewing and Hamidi 
(2014); higher values of the index correspond to more compact 
regions, lower values to more sprawling regions 

21 95.68 26.71 

regional population within the region (in 1000s) 21 2217 1663 
regional average gasoline prices for 2010 at each region 21 2.89 0.12 
Built environment variable loadings on the neighborhood compactness index 

Variable Factor 
Loadings 

Factor Score 
Coefficients 

activity density 0.842 0.32 
land use entropy 0.571 0.217 
intersection density 0.813 0.309 
transit stop density 0.83 0.316 
employment accessibility 0.493 0.187 
Eigenvalue: 2.629 
Explained variance: 52.59% 

Principal Component Analysis 227 

Rather than relying on multiple, correlated variables to represent the built environment around 228 
households, we chose to reduce many correlated variables to one factor, called a neighborhood 229 
compactness index, representing the built environment around households. This factor was 230 

TRB 2018 Annual Meeting Original paper submittal - not revised by author.



Guang Tian, KeunHyun Park, and Reid Ewing                                                                                                    8 
 

 

derived with principal component analysis (PCA), an analytical technique that takes a larger 231 
number of correlated variables and extracts a smaller number of factors that embody the common 232 
variance in the original data set.  233 

The greater the correlation between an original variable and a principal component, the 234 
greater the loading and the more weight the original variable is given in the overall principal 235 
component score. The more highly correlated the original variables, the more variance is 236 
captured by a single principal component. The principal component selected to represent the 237 
built environment was the first one extracted, the one capturing the largest share of common 238 
variance among the component variables, and the one upon which the component variables 239 
loaded most heavily (Table 1). It is the only principal component with an eigenvalue greater than 240 
1, a common cutoff point above which principal components are retained. This one principal 241 
component accounts for 52.59% of the variance in the dataset. All component variables load on 242 
this principal component with intuitively reasonable signs. Given the loadings, this principal 243 
component appears to represent the accessibility of residences to trip attractions outside the 244 
home. 245 

We transformed the first principal component, which had a mean of 0 and standard deviation 246 
of 1, to a scale with a mean of 100 and standard deviation of 25, which we refer to as a 247 
neighborhood compactness index.  To compute descriptive statistics and compare vehicle trip 248 
and parking generation rates with ITE, we categorized neighborhood settings into three groups 249 
based on this factor: sprawling neighborhoods (with index scores <= 90, 36.5% sample – 27,583 250 
households), average neighborhoods (with scores between 90 and 110, 35.7% sample – 26,999 251 
households), and compact neighborhoods (with scores >= 110, 27.8% sample - 21,033 252 
households). Roughly equal numbers of households in our data set fall into each category. 253 

RESULTS 254 

Descriptive Statistics 255 

Vehicle Trip Generation and Degeneration 256 

To compare the residential trip generation in household travel surveys to ITE trip generation 257 
rates, we limited the trips and households using the following criteria:   258 

• only included driver-based vehicle trips; trips made by passengers in a vehicle were not 259 
counted; 260 

• only included home-based vehicle trips; trips made between non-home locations were not 261 
counted; 262 

• only included households where every member of the household provided a travel dairy; 263 
many households provide incomplete trip records; 264 

• only included households where the last trip for each person was home-based; many 265 
respondents forget to report the last trip of the day, the one that takes them home. 266 

Table 2 provides vehicle trip rates from our 21-region database, for three different housing 267 
types and three different levels of neighborhood compactness. As expected, average trip rates per 268 
household are higher for single-family detached than single-family attached households, and for 269 
single-family attached than apartments and condos (multifamily units). Also as expected, 270 
average vehicle trip rates per household drop off with rising neighborhood compactness.  271 

Two interesting patterns emerge. First, when vehicle trip rates are presented on a per person 272 
basis instead of a per household basis, differences among housing types and compactness levels 273 
partially disappear. That is to say, household size differences account for some (but not all) of 274 
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the differences in vehicle trip rates. Second, the drop off in vehicle trip rates with compactness is 275 
far more pronounced between average and compact neighborhoods, than between sprawling and 276 
average neighborhoods. Comparing the extremes, single-family households in average 277 
neighborhoods generate 2.15 vehicle trips per person per day, while multifamily households in 278 
compact neighborhoods generate only 1.46 vehicle trips per person per day. 279 

Table 2 also provides comparable (as nearly comparable as possible) vehicle trip generation 280 
rates from ITE and NHTS. Our rates are much lower than ITE’s, even with the bulleted data 281 
limitations indicated above. Again, part of the difference has to do with household size. The 282 
differences between ITE and self-reported rates are not as stark on a per person basis. But even 283 
on a person basis, our rates and NHTS rates are lower than ITE’s. This begs the question of why 284 
self-reported vehicle trip rates would be lower than automated driveway counts from individual 285 
housing developments. Self-reports could be biased downward, since people may forget about 286 
certain vehicle trips after the fact or may simply tire of inputting trip data. Also, our trip rates 287 
exclude package delivery trips to households in a development, visitor trips by friends and 288 
family, lawn and household maintenance trips, and other trips that would not show up in a 289 
household travel diary survey.  290 

The large disparity in trip generation rates on a per household basis suggests that any 291 
adjustments to ITE trip generation rates to account for the D variables should be applied only to 292 
the household’s own home-based trip rates, not to the difference between our rates and ITE’s. 293 

TABLE 2 Average Vehicle Trip Generation Rates by Housing Type from 21 Region 294 
Database, ITE Trip Generation Manual, and NHTS 295 
21 regional database 

  

Neighborhood 
Compactness 

Index 
Sample Size 

Vehicle 
trips (per 

unit) 

Vehicle 
trips (per 
person) 

Single-family Detached 

1 17,196 5.05 2.09 
2 14,702 4.97 2.15 
3 9,174 4.17 2.03 

Average 41,621 4.82 2.10 

Single-family Attached 

1 1,252 3.64 2.19 
2 1,808 3.38 2.14 
3 2,074 2.81 1.60 

Average 5,170 3.21 1.93 

Apartment and Condo 

1 932 3.10 1.98 
2 2,384 2.80 1.88 
3 3,846 2.06 1.46 

Average 7,220 2.44 1.67 
ITE Trip Generation Manual (weekday) 

  
Vehicle 

trips (per 
unit) 

Vehicle 
trips (per 
person) 

Single-Family Detached (210) 9.52 2.55 
Condominium/Townhouse (230) 5.81 2.49 
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Apartment (220) 6.65 3.31 
2009 National Household Travel Survey (NHTS) 

  
Sample size 

Vehicle 
trips (per 

unit) 

Vehicle 
trips (per 
person) 

Single-family Detached 64,855 4.45 2.23 
Single-family Attached 13,994 2.87 1.90 
Apartment and Condo 4,089 3.27 1.97 

Vehicle Ownership and Car Shedding 296 

Parking generation is more complicated than vehicle trip generation. There is both supply of and 297 
demand for parking. There is off-street and on-street parking, only the former of which is 298 
captured by ITE. And, of course, there are ITE guidelines and actual parking numbers for 299 
surveyed households.   300 

Table 3 presents average vehicle ownership per household as a function of housing type and 301 
compactness level. As expected, households in single-family detached housing own more cars 302 
than those in single-family attached housing, and those in single-family attached housing own 303 
more than those in apartments and condos (multifamily housing). Also, as expected, households 304 
in sprawling neighborhoods own more cars than those in average neighborhoods, while those in 305 
average neighborhoods own more cars than those in compact neighborhoods.  306 

Again, two interesting patterns emerge. First, when vehicle ownership rates are presented on 307 
a per person basis instead of a per household basis, differences among housing types and 308 
compactness levels partially disappear. That is to say, household size differences account for 309 
some (but not all) of the differences in vehicle ownership rates. Second, the drop off in vehicle 310 
ownership rates with compactness is approximately the same between average and compact 311 
neighborhoods, as it is between sprawling and average neighborhoods. Comparing the extremes, 312 
single-family households in sprawling neighborhoods own 0.96 vehicles per person, while 313 
multifamily households in compact neighborhoods own only 0.66 vehicles per person. 314 

Table 3 also provides comparable (as nearly comparable as possible) vehicle ownership rates 315 
from ITE and NHTS. Our rates are lower than ITE’s. Again, part of the difference has to do with 316 
household size. The disparity in vehicle ownership rates on a per household basis suggests that 317 
adjustments to ITE vehicle ownership rates to account for the D variables are necessary. 318 

TABLE 3 Average Vehicle Ownership (and Associated Parking) by Housing Type from 21 319 
Region Database, ITE Parking Generation, and NHTS) 320 
21 regional database 

  

Neighborhood 
Compactness 

Index 

Sample 
Size 

Vehicle 
Ownership 
(per unit) 

Vehicle 
Ownership (per 

person) 

Single-family Detached 
  

1 24,278 2.34 0.96 
2 20,973 2.11 0.91 
3 12,848 1.81 0.87 

Average 58,922 2.14 0.92 
Single-family Attached 
  

1 1,561 1.64 0.91 
2 2,328 1.42 0.84 
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3 2,723 1.26 0.67 
Average 6,663 1.41 0.79 

Apartment and Condo 
  

1 1,183 1.36 0.83 
2 3,129 1.17 0.76 
3 4,885 0.96 0.66 

Average 9,277 1.09 0.72 
ITE Parking Generation (weekday) 

  Setting Peak Demand 
(vehicles per unit) 

Single-Family Detached (210) — 1.83 
Townhouse/Condominium (230) Suburban 1.38 

Low/Mid-Rise Apartment (221) Suburban 1.23 
Urban 1.20 

High-Rise Apartment (222):  
5 or more floors 

Central City, 
not 

downtown 
1.37 

2009 National Household Travel Survey (NHTS) 

  

Sample 
size 

Vehicle 
Ownership 
(per unit) 

Vehicle 
Ownership (per 

person) 
Single-family Detached 117,353 2.22 1.02 
Single-family Attached 24,275 1.30 0.74 
Apartment and Condo 8,056 1.82 0.95 

Inferential Statistics 321 

To increase statistical power and external validity, we pooled data from 21 diverse regions. The 322 
data and model structure are hierarchical, with households “nested” within regions.  The best 323 
statistical approach for nested data is multilevel modeling (MLM), also called hierarchical 324 
modeling (HLM). MLM accounts for spatial dependence among observations (Raudenbush and 325 
Bryk, 2002). Households living in a region such as Boston are likely to have very different 326 
vehicle trip generation or vehicle ownership characteristics compared to a region such as 327 
Houston, regardless of household and neighborhood characteristics. The essence of MLM is to 328 
isolate the variance associated with each data level. MLM partitions variance between the 329 
household level (Level 1) and the regional level (Level 2) and then seeks to explain the variance 330 
at each level in terms of level-specific variables. 331 

The number of vehicle trips generated by a household and the number of vehicles owned by a 332 
household are count variables, which can only assume the values of zero, one, two, or some 333 
larger positive integer. Although vehicle ownership has been widely modeled as a discrete choice 334 
in the literature (34), this may be not the best approach. We think count regressions may better fit 335 
the data. Two regression methods are used to model count variables – Poisson and negative 336 
binomial regression. They differ in their assumptions about the distribution of the dependent 337 
variable.  Poisson regression is appropriate if the dependent variable is equi-dispersed, while 338 
negative binomial regression is appropriate if the dependent variable is overdispersed. Popular 339 
indicators of overdispersion are the Pearson and χ2 statistics divided by the degrees of freedom, 340 
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so-called dispersion statistics. If these statistics are greater than 1.0, a model is said to be 341 
overdispersed (Hilbe, 2011: pages 88 and 142). By these measures, we have overdispersion of 342 
vehicle trips and near equi-dispersion of vehicle ownership rates, so the negative binomial model 343 
is appropriate for the former and the Poisson model is appropriate for the later. Models were 344 
estimated with HLM 7, Hierarchical Linear and Nonlinear Modeling software.  Only the 345 
intercepts were allowed to vary randomly across level 2. All the regression coefficients at level 2 346 
were treated as fixed and are called random intercept models (Raudenbush and Bryk, 2002). 347 

Vehicle Trip Generation and Degeneration 348 

The best-fit multilevel negative binomial regression models for vehicle trip generation by 349 
different housing types are shown in Table 4. For all three types of housing, the number of 350 
vehicle trips generated by a household increases with household size, number of working 351 
members, and household income. Bigger households with more workers and higher incomes tend 352 
to generate more vehicle trips. 353 

We see evidence of trip degeneration as well. Controlling for socioeconomic variables, 354 
vehicle trip generation declines with neighborhood compactness. This relationship suggests that 355 
areas with high population and employment density, diverse land uses, good street connections, 356 
great transit service, and high accessibility allow direct substitution of transit, walk, and bike 357 
travel for automobile travel. At the regional level, for single-family detached and attached 358 
housing, vehicle trips decline with regional population. Larger regions typically offer much 359 
better transit service, which leads to substitution of transit trips for automobile trips. 360 

The pseudo-R2s of the models range from 0.22 to 0.33. We have shown the pseudo-R2 largely 361 
because urban planners are used to dealing with R2s and may want this information. Pseudo-R2s 362 
in multilevel regressions are not equivalent to R2s in ordinary least squares regression, and 363 
should not be interpreted the same way. The pseudo-R2 bears some resemblance to the statistic 364 
used to test the hypothesis that all coefficients in the model are zero, but there is no construction 365 
of which it is a measure of how well the model predicts the outcome variable in the way that R2 366 
does in conventional regression analysis. 367 

Vehicle Ownership and Car Shedding 368 

The best-fit multilevel Poisson regression models for vehicle ownership of different housing 369 
types are also shown in Table 4. For all three types of housing, the number of vehicles owned by 370 
a household increases with household size, number of working members, and household income.  371 

We see evidence of car shedding as well. Controlling for socioeconomic variables, vehicle 372 
ownership declines with neighborhood compactness. This relationship suggests that areas with 373 
high population and employment density, diverse land uses, good street connections, great transit 374 
service, and high accessibility allow direct substitution of transit, walk, and bike travel for 375 
automobile travel, and thus car shedding. At the regional level, for apartments and condos, 376 
vehicle ownership declines with regional compactness index and population. Multifamily 377 
households living in compact and large regions own fewer vehicles than households living in 378 
sprawling and small regions. Again, the logical explanation is the ability to substitute transit trips 379 
for automobile trips in large regions with extensive transit service. The pseudo-R2s of the models 380 
are 0.67 or higher. See the above discussion of pseudo-R2s in multi-level models. 381 

TABLE 4 Modeling Results of Household Vehicle Trips and Ownership 382 
Multilevel negative binomial regression for household vehicle trip generation 
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Single-family 
Detached 

Single-family 
Attached 

Apartment and 
Condo 

intercept 1.089 *** 1.225 *** 1.098 *** 
regional population -0.00002 *** -0.00003 ** — 

 household size 0.167 *** 0.206 *** 0.187 *** 
workers 0.117 *** 0.146 *** 0.209 *** 
household income 0.002 *** 0.002 *** 0.003 *** 
neighborhood compactness index -0.002 *** -0.006 *** -0.007 *** 
pesudo-R2 0.33 0.28 0.22 
"—" means this variable is not statistically significant. 
*** p-value < 0.01, ** p-value < 0.05, * p-value < 0.1 

Multilevel Poisson regression for household vehicle ownership 

 

Single-family 
Detached 

Single-family 
Attached 

Apartment and 
Condo 

intercept 0.718 *** 0.312 *** 0.385 *** 
regional compactness index —  —  -0.0026 *** 
regional population — 

 
— 

 
-0.00003 ** 

household size 0.057 *** 0.099 *** 0.107 *** 
workers 0.148 *** 0.190 *** 0.208 *** 
household income 0.002 *** 0.003 *** 0.005 *** 
neighborhood compactness index -0.005 *** -0.006 *** -0.005 *** 
pesudo-R2 0.87 0.83 0.67 
"—" means this variable is not statistically significant. 
*** p-value < 0.01, ** p-value < 0.05, * p-value < 0.1 

DISCUSSION AND CONCLUSION 383 

Smart growth, as an alternative to auto-oriented sprawling development, encourages mixed 384 
residential and nonresidential land uses in walkable communities with transit options and nearby 385 
essential destinations. Increasingly, planners, scholars, innovative developers, and local officials 386 
across the world promote smart growth as an antidote to many of the ills associated with urban 387 
sprawl. It is vitally important to accurately estimate the traffic impacts of a smart-growth 388 
development if communities are to reward such projects through lower exactions and 389 
development fees or expedited project approvals, and to right-size parking requirements. 390 
However, lacking a reliable methodology for adjusting trip and parking generation rates, 391 
communities relying on ITE guidelines are led to understate the traffic benefits of mixed-use 392 
development proposals and therefore discourage otherwise desirable developments.  393 

This study explores how many fewer vehicle trips are generated, and how much less parking 394 
demand is generated, by different housing types in different settings, from low density suburban 395 
environments to compact, mixed-use urban environments. The results show that vehicle trip 396 
generation and vehicle ownership (and hence parking demand) decrease with the compactness of 397 
neighborhoods after controlling for sociodemographic factors. In other words, the posited 398 
phenomena of “trip degeneration” and “car shedding” are borne out. 399 

Applications to Planning 400 
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How might the statistics in Tables 2 through 4 be used to plan for new developments? For the 401 
purpose of preliminary analysis or when the built environment and sociodemographic data are 402 
not available, a planner could estimate vehicle trip and parking generation from the descriptive 403 
statistics (Tables 2 and 3) showing average numbers aggregated from multiple regional 404 
household travel surveys. For three housing types – single-family detached, single-family 405 
attached, and apartment and condo – and three levels of compactness in built environment setting, 406 
planners could apply the average vehicle trips and average vehicle ownership (per unit or per 407 
person) to a specific development site.  408 

On the other hand, with the complete data sets listed in Table 1, planners are able to predict 409 
more accurate and reliable values of vehicle trip and parking generation. The process of 410 
calculating these two values is laid out below.  411 

First, planners need to collect all required built environment and sociodemographic data. 412 
Second, built environment variables must be converted to a compactness index for a 413 
neighborhood (1-mile buffer) around a given site. 1) Each D variable must be standardized using 414 
the means and standard deviations in Table 1. A standard (Z) score is calculated as (original 415 
value - mean) / (standard deviation). 2) The standard score of each variable is then multiplied by 416 
the factor score coefficient of that variable from Table 2 and all five multiplied scores are 417 
summed. 3) Lastly, the summed score can be converted into a final neighborhood compactness 418 
index (with a mean of 100 and a standard deviation of 25) by multiplying the summed score by 419 
25 and adding 100 to the result. Third, all values of independent variables are entered into the 420 
regression equations in order to estimate vehicle trip generation or parking generation (Table 4). 421 
Note that the predicted values in negative binomial and Poisson models are the logs of the 422 
expected values of the outcome variables. Thus, to derive estimates of vehicle trip generation and 423 
vehicle ownership, one needs to exponentiate the values from the regression equations, that is, 424 
take the anti-logs of the values.  425 

For example, in a region with a population of 2 million, we assume a given single-attached 426 
development has an average household size of 2.0 persons, has labor force participation of 1.0 427 
worker per household, has a median household income of $60,000, and has a neighborhood 428 
compactness index either 75 or 125 (one standard deviation below and above the mean – 429 
bounding the result). Taking these values into the equation for vehicle trip generation in Table 4 430 
(1.225 - 0.00003 * 2000 + 0.206 * 2 + 0.146 * 1 + 0.002 * 60 - 0.006 * 75 or 125), we compute 431 
values of 1.393 and 1.093. After exponentiation, the predicted vehicle trip generation is 4.03 432 
vehicle trips per day for the sprawling neighborhood and 2.98 vehicle trips per day for the 433 
compact neighborhood. By contrast, the ITE trip generation rate per unit on a weekday for 434 
townhouses and condos is 5.81. The difference is partly due to package delivery trips, garbage 435 
collection trips, etc., but is also due to the unique characteristics of the development, including 436 
the compactness of the neighborhood in which the development is located. We would compare 437 
the computed vehicle trip generation rate to the average for the entire sample from Table 2 (3.21 438 
vehicle trips in this case), and adjust the ITE rate accordingly. 439 

Study Limitations 440 

We acknowledge a few limitations of this study. First, it may be difficult for local planners and 441 
engineers to collect and process the built environment data required for use of our tables. Some 442 
GIS data in section 3.2 might not be available at the local level or may require collaborations 443 
among multiple agencies. Also, data processing requires GIS skills such as network analysis. 444 
Most desirably, metropolitan planning organizations (MPOs) would collect, process, and publish 445 
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compactness metrics for subareas (traffic analysis zones perhaps) within their regions. We have 446 
done this for individual households in 21 regions, so it is doable.  447 

Second, diverse impacts of built environment variables are glossed over by using a single 448 
measure of compactness to characterize the built environment. We acknowledge that the 449 
different D variables have different impacts on travel behavior and vehicle ownership. On the 450 
other hand, a single index has the advantage of simplicity when presenting rates for different 451 
housing types (see Tables 2 and 3). Planners can conveniently consult 3 x 3 tables to predict trip 452 
generation and parking demand for a new development project.  453 

Third, relying on conventional household travel surveys, this study did not control for 454 
attitudinal variables or residential self-selection effects. Only three of regions included attitudinal 455 
variables in their survey. Residential self-selection occurs if the choice of residence depends in a 456 
significant way on preferences for owning automobiles or choosing one mode of transportation 457 
over another (36, 37). Such attitudes confound the relationship between the residential 458 
environment and travel choices or vehicle ownership. The benefits associated with compact 459 
urban development patterns – trip degeneration and car shedding in this study – may be 460 
overestimated or underestimated. The evidence is mixed (Ewing et al., 2016; Ewing and Cervero, 461 
2010; Stevens, 2017). 462 

Fourth, while count regression models (negative binomial or Poisson regression) are 463 
commonly used in vehicle trip and parking generation studies, they treat car ownership as 464 
separate from vehicle trip generation when the two are actually linked  (34). Car ownership plays 465 
a mediating role in the complex relationship between the built environment and travel 466 
behavior(38). Using structural equation models, future research might be able to measure both 467 
the direct effect of built environment on travel behavior and the indirect effect via car ownership.  468 

Lastly, household travel surveys may not be the most accurate source of vehicle trip 469 
generation estimates for residential developments. There are significant differences between our 470 
results and ITE trip generation rates due presumably to under-reporting of trips in household 471 
diary surveys plus delivery and visitor traffic not captured in household travel surveys. These 472 
create systematic downward bias that needs to be corrected in trip generation analysis. 473 

Still, we believe that our results have the potential to improve ITE trip generation and 474 
parking generation estimates by explicitly accounting for trip degeneration and car shedding in 475 
compact, mixed-use urban environments (as compared to ITE’s sprawling, single-use suburban 476 
environments). They should not be viewed so much as a substitute for ITE rates but rather as a 477 
supplement to ITE rates that can be used by professional planners and engineers in project-478 
specific trip and parking generation analyses. 479 
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